贪心算法
描述:
贪心算法也叫作贪婪算法,是指在求解问题时总做出在当前看来最好的选择,就是不从整体考虑问题,仅在某种意义上的局部最优解。虽然不是所有问题都能得到最优解,但是面对范围广泛的许多问题时,能产生整体最优解或者是整体最优解的近似值。
贪心算法思路:
从问题的某一个初始解出发,逐步逼近给定的目标,以便更快的求出更好的解。当达到算法中某一步不能再向前时,就停止算法,给出一个近似解。
缺点:
(1)不能保证最后的解是最优解;
(2)不能用来求最大、最小解问题;
(3)只能求满足某些约束条件的可行解范围。
矩阵选数问题
在N行M列的正整数矩阵中,要求从每行中选出1个数,使得选出的总共N个数的和最大。(1<=N, M<=100,结果在int范围内)
【分析】要使总和最大,则每个数要尽可能大,自然应该选每行中最大的那个数。
局部最优解:每行中的最大数;全局最优解:N个数和的最大值。
#include <stdio.h>
#define maxn 105
int N,M;
int maxnum; //maxnum记录每行中的最大值
int sum=0; //sum记录每行中的最大值之和
int a[maxn][maxn];
int main()
{
int i,j;
scanf("%d %d",&N,&M);
for(i=0;i<N;i++)
for(j=0;j<M;j++)
scanf("%d",&a[i][j]);
for(i=0;i<N;i++)
{
maxnum=0;
for(j=0;j<M;j++) //循环更新每行的最大值
{
if(a[i][j]>maxnum)
maxnum=a[i][j];
}
sum+=maxnum;
}
printf("%d\n",sum);
return 0;
}
钱币找零问题
有1元、5元、10元、50元、100元、500元的硬币各C1, C5, C10, C50, C100, C500枚。现在要用这些硬币来支付A元,最少需要多少枚硬币?若有解,输出最少硬币数;否则输出“-1”(0<=C1, C5, C10, C50, C100, C500<=109,0<=A<=109)
【分析】凭直觉,我们可以优先使用面值大的硬币(在这里是500、100、50、10、5、1)
#include <iostream>
using namespace std;
int A;
int ans=0; //所需硬币总数
int ret[6]={0}; //所需每种硬币的数量
int moneycnt[6];//现有6种硬币的数量
int moneyval[6]={1,5,10,50,100,500};//每种硬币的面值
int main()
{
int i;
int temp;
cin>>A;
for(i=0;i<6;i++)
cin>>moneycnt[i];
//贪心策略:优先选择面值大的硬币
for(i=5;i>=0;i--)
{
//temp记录使用硬币i的枚数,注意不能超过moneycnt[i]
temp=min(A/moneyval[i],moneycnt[i]);
//剩余支付金额
A-=(temp*moneyval[i]);
//使用硬币i的枚数+temp
ret[i]+=temp;
//已使用的硬币数+temp
ans+=temp;
}
//A>0表示无法用现有硬币支付A元,故输出-1
if(A>0)
cout<<"-1"<<endl;
//其它情况:可完成支付
else
{
//最少硬币数
cout<<ans<<endl;
//每种硬币需要的数量
for(i=0;i<6;i++)
cout<<moneyval[i]<<"元:"<<ret[i]<<endl;
}
return 0;
}